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ABSTRACT 

The cosmos appears to be expanding, according to recent measurements of supernovae and the cosmic microwave 

background. Gravitational scalar tensor theories produce cosmic models that logically incorporate a late-time fast 

expansion. In a different hypothesis, the stretch of the universe is produced using a scalar field (quintessence), much like 

the early inflation. In this study, we focus on a particular category of scalar field cosmological models. It has a quartic 

potential and a conformally connected scalar field. The cosmic dynamics are detailed, and the braking scale is assessed in 

the model. For the values of the scale, that are supplied, the expansion accelerates in the late stages. 
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INTRODUCTION  

The largely accepted theory of the nature of the universe's structure and evolution has been re-examined in light of recent 

evidence of the cosmos' accelerated expansion (Copeland et al., 2006; Perlmutter et al., 1999; Garnavich et al., 1998). The 

cosmological constant is the most likely choice to explain the acceleration of space-time (Weinberg, 1989). Consider the 

negative pressure that occurs from a non-zero vacuum energy as a counterpart to this (Linde, 1982; Starobinski, 1982; 

Guth, 1981). The idea that the universe is composed of a unique material termed quintessence (Steinhardt and Caldwell, 

1998) offers an alternate explanation for the observed acceleration. Intriguingly, the presence of quintessence has an 

impact on Logunov and colleagues' relativistic theory of gravitation (RTG): rather than expanding more quickly, the 

universe slows down, stops, and then contracts to a scale factor minimum before beginning a new cycle of expansion 

(Chernin, 2008; Gershtein et al., 2003). It should be emphasized that before, mostly for philosophical reasons, the 

oscillating nature of the universe's evolution was initially posited (Markov and Aman, 1984). The transit through the 

cosmic singularity and the rise in entropy from cycle to cycle cause the oscillation mode of the Friedmann closed model to 

be broken up (Tolmen, 1949). 

In this study, we examine a class of scalar field cosmological models. The paper is structured as follows. The 

conformally linked scalar field cosmology model with the barotropic equation of state, non-gravitational matter, and the 

Higgs potential is discussed in the next section. The universe's accelerated expansion models are listed. The key findings of 

the paper are outlined in Section 3. 
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Cosmological Matter with a Scalar Field (Conformally Coupled) 

The quartic potential and the conformally connected scalar field interact (Stanukovich and Melnikov, 1983; Melnikov, 

2011; Bronshtein and Semendjaev, 1980) as shown below: 
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The following field equations are obtained as: 
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In this instance, the Eq. (2.2) is condensed by taking (2.3) into consideration 

R = kT = k( 3P)          (2.5) 

The homogeneous and isotropic universe model is often thought to work well with geometry using the 

Friedmann-Robertson-Walker metric. The aforementioned equations consequently hold true for the flat model of matter 

having the equation of state P =  
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Here the scale factor is R(t). One of the system's equations, (2.6) - (2.10), is derived from the others. 

The following expression for the deceleration parameter is obtained from (2.8) 
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Here the Hubble parameter is H = R/R , because it follows from the requirement q 0 that there is a chance that the 

cosmos is expanding uniformly or quickly is 
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(Let us consider that the framework of General Relativity one has crit = 3H2/(8G)) The problem q is phrased as 

follows for the variation of , a feature of cosmology: 
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q = 1, scalar field conquered ( = 0, P = 0), 

The Hubble parameter can be stated using (2.8) in the following way: 
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 is an integration constant.  

Let's examine each unique instance in turn: 

(i) R = ,bct2  H = c/R2results from the scalar curvature going to zero for the scalar field rules (, P = 0) or 

when it comes to the equation of state P = /3 
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i.e. for adequately large R we have  .k/6  

(ii) The systematic structure for the functions R,, H be unchanged, if the radiation is dominating (= 1/3) while 

the scalar field is present, and equation (2.14) represents 
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so that c2 = .c/2k/6 2
0  In both scenarios (i) and (ii), the universe's growth is continuously slowed down, 

and as it gets older, scalar fields often have constant values. 

(iii) P = 0,  = 0//R
3, which means that we get the Hubble parameter for the matter-dominant era, 
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and, correspondingly, 
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The first component on the RHS of (2.16), which dominates near the end of the cosmic expansion (R), results in the 

standard matter-dominated development and a decelerated expansion. One has q ½ in this limit (as in GR). 

For > 0, we have the following solution 

It directly integrates Eq. (2.16). The solution is given in the form of  
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in which the notation t2 = 6||3/2/(k0)
2is used. At the beginning and ending of the cosmic growth, we have, 

respectively, R(t)  t1/2at t  0, and R(t)  t2/3 at t . The expansion always slows down in this circumstance. 

For < 0, 
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Currently, the early-time dynamics are completely different, while the late-time evolution matches that of the 

earlier scenario. An asymptotic behaviour of R Rmin + (k0)
3 t2 / (42), t  0, and Rmin = 3|| / (k0) are the initial 

conditions for the expansion. Early on, the expansion is accelerated and the inequality 1  v  2replaces the prerequisite q 

 0. 

It is easy to find the scalar field's temporal evolution in the case where  = 0 
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with the representation U = R.  

For the scalar field (2.16) from here, we find 
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Where the scale factor  and v are related by the formulas (2.18 and (2.19) At the end of the expansion, one has 

 0 in both occurrences of the sign for one. For non-zero values of the parameter, the dynamics of the field at the 

beginning of the expansion are fundamentally different: for positive values, we obtain,  , 1  0, whereas the field 

tends to zero for negative values,  0, 1  0. 

(iv) We have a set of equations for the equation for the condition P =  
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Substituting v = R2 equation (2.23) becomes 
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It becomes 

R(t) = R0sinh1/2v, v = 2t 3/k         (2.26) 
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For > 0 

R(t) = R0cosh1/2v(2.26) 

For < 0, where 2
04R = ./(3  k , equation (2.23) is reduced to the equation 
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where f = than for < 0 and f = cosh for > 0. The hyper geometric function is used to express the answer to 

equation (2.27). The Eq. (2.27) is reduced to when the scale factor is big, which corresponds to the later phases of the 

cosmic growth, t , one has R  e/2, 
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and as a result, for  one finds 
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Here C1, C2are constants. The scalar field vanishes at this limit, one has q1. 

CONCLUSION 

Scalar fields are essential in hypothetical models that show the growth of the cosmos. Now, we have examined the cosmic 

dynamics of a specific class of scalar field models. We have demonstrated, by means of this model that the cosmos enters 

the phase of accelerated expansion when the dynamic term of the scalar field prevails during the phase of decelerating 

expansion. When the scalar field reaches a constant value in the latter stages, we see an exponential expansion. There is a 

description of the conditions that lead to an accelerated period of cosmic expansion. We have particularly shown that the 

expansion is always slowed down in the presence of radiation-type materials or a dominant scalar field. The collection of 

dust is real in this model. The cosmos starts to grow at in (2.16), starting from a determinate worth of the scale issue, 

initially expanding more swiftly before slowing down and ultimately arriving at a location where the scalar field tests to 

zero. The early universe mostly relies on the value of the incorporation constant ‘b’ on the RHS of the cosmological 

equations when the extra source is provided by the cosmological constant. The analogous scaling factor, which has a 

smallest non-zero value for negative ‘b’, is given by formulas (2.25) and (2.26). The scalar field diminishes exponentially 

at the end of the cosmic expansion, and the expansion is now driven exponentially by the cosmological constant. 
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